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We present here a study of the clustering and loops in a graph of the Internet at the autonomous systems
level. We show that, even if the whole structure is changing with time, the statistical distributions of loops of
order 3, 4, and 5 remain stable during the evolution. Moreover, we will bring evidence that the Internet graphs
show characteristic Markovian signatures, since the structure is very well described by two-point correlations
between the degrees of the vertices. This indeed proves that the Internet belongs to a class of network in which
the two-point correlation is sufficient to describe their whole localsand thus globald structure. Data are also
compared to present Internet models.
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In the last five years the physics community has started to
look at the Internetf1g as a beautiful example of a complex
system with many degrees of freedom resulting in global
scaling properties. The Internet in fact can be described as a
network, with vertices and edges representing, respectively,
autonomous systemssASsd and physical lines connecting
them. Moreover it has been shownf2,3g that it belongs to the
wide class of scale-free networksf4,5g emerging as the un-
derlying structure of a variety of real complex systems. But,
in addition to the common scale-free connectivity distribu-
tion, what distinguishes networks as different as the social
networks of interactions and the technological networks such
as, for example, the Internet? Researchers have started to
characterize further the networks, introducing different topo-
logical quantities in addition to the degree distribution expo-
nent. Among those, the clustering coefficientCskd f6g and the
average nearest neighbor degreeknnskd of a vertex as a func-
tion of its degreek f7,8g. In particular, measurements on the
Internet yieldCskd,k−m with m.0.75f9g andknn,k−n with
n.0.5 f9g. A two-vertex degree anticorrelation has also been
measuredf10g. Accordingly, the Internet is said to display
disassortative mixingf11g, because nodes prefer to be linked
to peers with different degree rather than similar. This situa-
tion is opposed to that in social networks where we observe
so-called assortative mixing.

Moreover, the modularity of the Internet due to national
patterns has been studied by measuring the slowly decaying
modes of a diffusion process defined on itf12g. Recently,
more attention has been devoted to network motifsf13,14g,
i.e., subgraphs appearing with a frequency larger than that
observed in maximally random graphs with the same degree
sequence. Among those, the most natural class includes
loopsf15–18g, closed paths of various lengths that visit each
node only once. Loops are interesting because they account
for the multiplicity of paths between any two nodes. There-
fore, they encode the redundant information in the network
structure.

In this paper we will present data of the scaling of loops
of length hø5 in the Internet graph and we will show that

this scaling is very well reproduced by the two-point corre-
lation matrix between the degrees of linked pairs of vertices.
This allows us to suggest that the Internet is “Markovian,”
i.e., correlations of order higher than 2 are negligible. In the
paper we then study the structure of the graph in the two-
point correlation assumption with the goal of characterizing
the cycle structure of the Internet and defining an upper limit
of the scaling of the number of loops with the system size
valid for all possible lengths of the loops.

To measure the number of loops in an undirected network
we consider its symmetrical adjacency matrixhaijj, with aij

=1 if i and j are connected andaij =0 otherwise. If no loops
sself-links in a vertexd are present, i.e.,aii =0 for all i, the
number of loops of lengthh is given by a dominant term of
the type Trsahd /h that counts the total number of paths of
lengthh minus all the contributions coming from intersecting
paths. Forh=3 these terms are absent and the total number
of loopsN3 of lengthh=3 is given by

N3 =
1

6o
i

sa3dii . s1d

In the case of short loopshø5 these terms can be easily
evaluated and give the expressions for the total number of
loops of sizeh=4, 5, N4,N5 f15g,

N4 =
1

8Foi

sa4dii − 2o
i

sa2diisa2dii + o
i

sa2diiG ,

N5 =
1

10Foi

sa5dii − 5o
i

sa2diisa3dii + 5o
i

sa3diiG . s2d

To measure the actual scaling in Internet at the AS level, we
used Eqs.s1d ands2d. The data of the Internet at the autono-
mous system level are collected by the University of Oregon
Route Views Project and made available by the NLANR
sNational Laboratory of Applied Network Researchd. The
subset we used in this manuscript is given inf30g. We con-
sidered 13 snapshots of the Internet network at the AS level
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at different times starting from November 1997swhen N
=3015d to January 2001sN=9048d. Throughout this period,
the degree distribution is a power law with a nearly constant
exponentg.2.22s1d. Using relationss1d and s2d, we mea-
sure Nhstd for h=3, 4, 5 in the Internet at different times,
corresponding to different network sizes. We observe in Fig.
1 that the data follow a scaling of the type

NhsNd , Njshd s3d

with the jshd exponents reported in Table I.
To model the Internet means to find a class of networks

defined by a stochastic algorithm that share the main charac-
teristics of the Internet graph. Consequently, we suppose that
the real Internet graphs belong to a certain ensemble of
graphs and it is actually a realization of the Internet. Suppos-
ing one knows this ensemble, in order to evaluate the number
of loops one theoretically would need to know the entire
probability distribution for each element of the adjacency
matrix, i.e., the probability distribution

Psa11,… ,a1,N,… ,aN,1,… ,aN,Nd. Let us make the assump-
tion that the probability for a set ofh nodes to be connected
depends only on the connectivities. The zero-order approxi-
mation to Eqs.s1d and s2d would be then to assume that the
connectivity of the nodes are completely uncorrelated and
then the formula for calculation of the loops of sizeh would
be f19g

Nh
s1d =

1

2h
Fo

k

ksk − 1dPskd

kkl
Gh

, s4d

Given a distributionPskdk−g with a cutoff atkc=N1/x we get
the scaling prediction Eq.s3d with jshd=hs3−gd /x, in the
relevant case 2,g,3. In the special case of an uncorrelated
graph with g=3 we obtain the scaling behaviorNhsNd
,flogsNdgcshd, with cshd=h. Interestingly enough, the same
calculation is exactly valid also in a Barabási-Albertf20g
network which is an off-equilibrium network but with zero
correlationsf15g. We need to observe that the fact itself that
in the Internet data the exponentx follows

1

x
=

1

g − 1
s5d

indicates that the network is strongly correlated, in fact for
uncorrelated networks we would expect 1/c=1/2 f21,22g.

The real exponentsjshd as expected depend onh, but
unfortunately they significantly differ from the zero-order
approximation valuesjshd=hs3−gd /x with x given by Eq.
s5d for andg.2.22 ssee Table Id. So, the correlation nature
of the Internet cannot be neglected when one looks at the
scaling of the loops in the network.

The first order approximation for Eqs.s1d ands2d consists
in taking into account that the connectivity of the nodes is
correlated. In order to calculate the number of small loops in
the network one can approximateNh,Trsah/2hd. Fixed a
direction on the loops, each node is reached by one link
connected to the previous node. The probability that a node
of degreek1, already part of the loop, is connected to a suc-
cessive node of degreek2 is given by sk1−1dPsk2uk1d since
we can decide to follow one of its remainingk1−1 nodes.fIn
our notationPskuk8d indicates the probability that, following
one link starting at nodek8, one reaches a node with connec-
tivity k.g Consequently, the number of loops of sizeh in this
first order approximation is given by

Nh
s2d =

1

2h
TrsChd s6d

where the matrixC is defined as

Ck,k8 = sk8 − 1dPsukuk8d. s7d

Of course for higher order loops it will not be possible to
neglect the contributions of intersecting paths, but still Eq.
s6d would provide an upper limit to the behavior ofNhsNd. In
Fig. 1 we compare the real data with the first order approxi-
mation given by Eqs6d. It is clear that this approximation
captures most of the cycle structure, at least for small values
of h. Since we observe this peculiar characteristic of the

FIG. 1. Number ofh loopsNh as a function of the system sizeN
shown with empty symbols for loops of length 3,4,5scircles,
squares, and diamondsd. In the solid line we report the first order
approximation and in the dashed line the power-law fit to the data.
In the inset we report the logarithm of the largest eigenvalue of the
matrix C as a function of the system size.

TABLE I. The exponentjsnd for n=3, 4, 5 as defined in Eq.s3d
for real data, in the zero order approximationsZOAd and in the first
order approximationsFOAd, and for network models.

System js3d js4d js5d

AS 1.45±0.07 2.07±0.01 2.45±0.08

ZOA 2.26±0.06 3.15±0.07 3.94±0.09

FOA 1.34±0.03 1.86±0.04 2.25±0.05

Fitness 0.59±0.02 0.86±0.02 1.10±0.02

GNG sp=0.5d 0.53±0.03 0.72±0.03 0.96±0.02

GNG sp=0.6d 0.53±0.03 0.74±0.03 0.99±0.02

D 1.60±0.01 2.20±0.03 2.70±0.03

ND 1.59±0.03 2.11±0.03 2.64±0.03
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Internet graphs it is worth looking at the structure of the
matrix C. Indeed the matrixC is characterized by a spectrum
in which there are eigenvaluesl which scale as

lsNd , Nu s8d

whereu=0.47±0.01. In Fig. 2 we show how this spectrum
scales for the different snapshots of the Internet at the au-
tonomous system level. The largest eigenvalueLmaxsNd is
the one of much interest to us in this paper since it is respon-
sible for the behavior ofNh at largeN. Indeed we can esti-
mate an upper limit for the scaling of the loops of generic
lengthh with the system size, i.e.,Nh

s2døOsLmax
h /2hd where

the scaling is supposed to be valid untilh!h* where some
arguments support the scalingh* ,Ns3−gd/2 for random scale-
free graphsf23g and h* ,N1/sg−1d for correlated graphsf18g
ssee for the behavior of the number of loops at largeh in
regular random graphsf24gd.

To make a comparison between the real data and the
model present in the literature at the moment we consider the
fitness modelf25g and the generalized network growth
sGNGd modelf26g and the competition and adaptation model
f29g with sDd and without sNDd distance constraints. The
fitness model has indeedg=2.255 and the GNG model has a
power-law exponent that depends on the intrinsic parameter
p, gspd=2+p/ s2−pd. In order to compare networks with a
similar mean degreefkklP s3.4–4.0d f27,28g for the Inter-
netg, we consider the fitness model withm=2 skkl=2m=4d
and the GNG model with parameterp=0.5skkl=2/p=4d and
p=0.6 skkl=2/p=3.33d. All models present nontrivial corre-
lations of the nodes as can be seen by observing theCskd and
knnskd functions.

In Table I we compare thejshd exponents of the real data
with the exponents numerically calculated for the considered
models. Whilejshd grows almost linearly withh as expected
we observe that the D and ND models seem to best repro-
duce the data.

Following f16g, we also measured the clustering coeffi-
cientsc3,i andc4,i as a function of the connectivityki of node
i for all i’ s. In particular,c3,i is the usual clustering coeffi-

cientC, i.e., the number of triangles including nodei divided
by the number of possible triangleskiski −1d /2.

Similarly, c4,i measures the number of quadrilaterals pass-
ing through nodei divided by the number of possible quad-
rilaterals Zi. This last quantity is the sum of all possible
primary quadrilateralsZi

p swhere all vertices are nearest
neighbors of nodeid and all possible secondary quadrilaterals
Zi

s swhere one of the vertices is a second neighbor of nodeid.
If node i haski

nn second neighbors,Zi
p=kiski −1dski −2d /2 and

Zi
s=ki

nnkiski −1d /2. In Fig. 3sad we plot c3skd ,c4skd for the
Internet data at three different timessNovember 1997, Janu-
ary 1999, and January 2001d showing that the behavior of
c3skd andc4skd is invariant with time and scales as

chskd , k−dshd s9d

with ds3d=0.7s1d andds4d=1.1s1d.
In Fig. 3, we compare the behavior ofc3skd andc4skd in

real Internet data with the first order approximation results.
Again we observe that the first order approximation results
are quite satisfactory, reinforcing our thesis that to explain
the loop structure of the Internet it is sufficient to stop at this
order. However, the behavior ofc3skd and c4skd cannot be
explained by just looking at the largest eigenvalues of theC
matrix but one has to consider the entire spectra. For com-
pleteness we also considered the behavior of the clustering
coefficientsc3skd andc4skd in Internet modelssTable IId. We
observe that while in the D and ND models there are large
deviations form the scalings9d these models seem in general
to capture better the cycle structure of the Internet with re-
spect to the other nonad hoc models we have considered
here.

In conclusion, we computed the numberNhstd of h loops
of size h=3, 4, 5 in the Internet at the autonomous system
level and the generalized clustering coefficients around
individual nodes as a function of node degrees. We have

FIG. 2. The rescaled spectra of the matrixC calculated over the
13 snapshots of the Internet under study.

FIG. 3. The clustering coefficientsc3skd andc4skd in the Internet
for the data of November 1997scirclesd, January 1999ssquaresd,
and January 2001strianglesd. Filled symbols, the same results ob-
tained in the first approximation assumption. Solid and dashed lines
indicate the power-law fit to the data and to the first order approxi-
mation results, respectively.
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observed that this evolving network has a structure of the
loops that is well captured by the two-point correlation ma-
trix. Indeed it seems that the Internet is Markovian in the
sense that it is not necessary to study a correlation function

of more than two points, at least to explain the cycle struc-
ture. For this reason we have characterized the correlation
matrix Ck,k8=sk8−1dPskuk8d, studying its spectrum. Finally,
we have compared these results with the behavior of the
same quantitiesNhsNd andchskd in the fitness model, in the
GNG model, and in the D and ND models, a chosen subset
of the available Internet models present in the literature,
finding that thead hocD and ND models seem to capture
better the cycle structure of the Internet.
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TABLE II. The exponent of the clustering coefficientc3skd and
c4skd as measured from Internet data as a result of the first order
approximationsFOAd and from simulations of Internet models.

System ds3d ds4d

AS 0.75±0.05 1.13±0.05

FOA 0.70±0.05 1.00±0.05

Fitness 0.67±0.01 0.99±0.01

GNG sp=0.5d 0.32±0.02 1.68±0.03

GNG sp=0.6d 0.27±0.02 0.93±0.01

D 0.3±0.2 0.8±0.2

ND 0.6±0.2 1.0±0.2
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