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Loops structure of the Internet at the Autonomous System Level
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We present here a study of the clustering and loops in a graph of the Internet at the autonomous systems
level. We show that, even if the whole structure is changing with time, the statistical distributions of loops of
order 3, 4, and 5 remain stable during the evolution. Moreover, we will bring evidence that the Internet graphs
show characteristic Markovian signatures, since the structure is very well described by two-point correlations
between the degrees of the vertices. This indeed proves that the Internet belongs to a class of network in which
the two-point correlation is sufficient to describe their whole Ideald thus globalstructure. Data are also
compared to present Internet models.
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In the last five years the physics community has started tthis scaling is very well reproduced by the two-point corre-
look at the Internef1] as a beautiful example of a complex lation matrix between the degrees of linked pairs of vertices.
system with many degrees of freedom resulting in globalThis allows us to suggest that the Internet is “Markovian,”
scaling properties. The Internet in fact can be described asia., correlations of order higher than 2 are negligible. In the
network, with vertices and edges representing, respectivelyaper we then study the structure of the graph in the two-
autonomous system@Ss) and physical lines connecting point correlation assumption with the goal of characterizing
them. Moreover it has been shop 3] that it belongs to the  the cycle structure of the Internet and defining an upper limit
wide class of scale-free networkd,5] emerging as the un- of the scaling of the number of loops with the system size
derlying structure of a variety of real complex systems. Butyvalid for all possible lengths of the loops.
in addition to the common scale-free connectivity distribu- To measure the number of loops in an undirected network
tion, what distinguishes networks as different as the socialve consider its symmetrical adjacency matfayg}, with a;
networks of interactions and the technological networks suck:1 if i andj are connected anal;=0 otherwise. If no loops
as, for example, the Internet? Researchers have started (eelf-links in a vertex are present, i.eg; =0 for all i, the
characterize further the networks, introducing different topo-number of loops of length is given by a dominant term of
logical quantities in addition to the degree distribution expo-the type Tfa")/h that counts the total number of paths of
nent. Among those, the clustering coeffici@tk) [6] and the  |engthh minus all the contributions coming from intersecting
average nearest neighbor degk8¥k) of a vertex as a func- paths. Forh=3 these terms are absent and the total number
tion of its degreek [7,8]. In particular, measurements on the of loopsN; of lengthh=3 is given by
Internet yieldC(k) ~ k™ with u=0.75[9] andk"™~ k™" with
v=0.5[9]. Atwo-vertex degree anticorrelation has also been Ns= EE (@3;. (1)
measured 10]. Accordingly, the Internet is said to display 675

disassortative mixin@11], because nodes prefer to be linked .
In the case of short loopg<5 these terms can be easily

to peers with different degree rather than similar. This situa- ) )
tion is opposed to that in social networks where we observ valuated and give the expressions for the total number of
oops of sizeh=4, 5,N,, N5 [15],

so-called assortative mixing.

Moreover, the modularity of the Internet due to national 1
patterns has been studied by measuring the slowly decaying Ny= g[E (@i - 22 (@2);(@d); + 2 (az)n],
modes of a diffusion process defined or[i2]. Recently, i i i
more attention has been devoted to network mdfif$ 14],
i.e., subgraphs appearing with a frequency larger than that 1 2
observed in maximally random graphs with the same degree N5 = E[; (@%; - 5; (@%@ + SEi (as)“] 2
sequence. Among those, the most natural class includes
loops[15-18, closed paths of various lengths that visit eachTo measure the actual scaling in Internet at the AS level, we
node only once. Loops are interesting because they accounsed Eqs(1) and(2). The data of the Internet at the autono-
for the multiplicity of paths between any two nodes. There-mous system level are collected by the University of Oregon
fore, they encode the redundant information in the networlRoute Views Project and made available by the NLANR
structure. (National Laboratory of Applied Network ReseajciThe

In this paper we will present data of the scaling of loopssubset we used in this manuscript is giver{30]. We con-
of lengthh<5 in the Internet graph and we will show that sidered 13 snapshots of the Internet network at the AS level
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9 I ‘ ‘ P(aiy, ..., 81N, -+ @n1s---@n). Let us make the assump-
~16 ] tion that the probability for a set ¢f nodes to be connected
814 s ﬂ ] 1 depends only on the connectivities. The zero-order approxi-
£ mation to Eqs(1) and(2) would be then to assume that the

14 L ! !
7t 34 36 h;"(-;) 40 42 connectivity of the nodes are completely uncorrelated and

= — then the formula for calculation of the loops of sizevould
z %
= 6 be[19]
E < /I}(e“ﬂn
= o , S kik-P(K) |"
~ N(l):i L (4)
\ e h T 2n (k) ’

PR Given a distributionP(k)k™” with a cutoff atk,=Nx we get
the scaling prediction Eq3) with &h)=h(3-v)/y, in the
relevant case 2 y<3. In the special case of an uncorrelated
graph with y=3 we obtain the scaling behavidy,(N)
FIG. 1. Number oh loopsN;, as a function of the system sige ~ ~ [10g(N)]#™, with y(h)=h. Interestingly enough, the same
shown with empty symbols for loops of length 3,4(&ircles, calculation is exactly valid also in a Barabéasi-Albg20]
squares, and diamondsn the solid line we report the first order network which is an off-equilibrium network but with zero
approximation and in the dashed line the power-law fit to the datacorrelationg15]. We need to observe that the fact itself that
In the inset we report the logarithm of the largest eigenvalue of thén the Internet data the exponenptfollows
matrix C as a function of the system size.
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at different times starting from November 199®hen N x v-1 )
=3013 to January 200IN=9048. Throughout this period, jgicates that the network is strongly correlated, in fact for
the degree distribution is a power law with a nearly constan{,correlated networks we would expect/i1/2 [21,22.
exponenty=2.221). Using relations(1) and (2), we mea- The real exponentg(h) as expected depend dy but
sure Ny(t) for h=3, 4, 5 in the Internet at different times, ynfortunately they significantly differ from the zero-order
corresponding to different network sizes. We observe in Figapproximation valueg(h)=h(3-v)/x with x given by Eq.
1 that the data follow a scaling of the type (5) for and y=2.22 (see Table)l So, the correlation nature

&b of the Internet cannot be neglected when one looks at the
Nn(N) ~N ) scaling of the loops in the network.

, . The first order approximation for E and(2) consists
with the £(h) exponents reported in Table I. in taking into accoﬂl?]t that the conngftlizlity o(f 2he nodes is

To model the Intemet means 1o find a class of newVorkscorrelated. In order to calculate the number of small loops in

defmgd by a stochastic algorithm that share the main chara?he network one can approximabd,~Tr(a"/2h). Fixed a
teristics of the Internet graph. Consequently, we suppose that ~ . . .

. irection on the loops, each node is reached by one link
the real Internet graphs belong to a certain ensemble o

graphs and it is actually a realization of the Internet. Supposg?gge(r:;eei toaf:]eeagrev;?ifnt?,g%gheig?fr?nbélgé (tjh?Ot : Snl?cd_e
ing one knows this ensemble, in order to evaluate the number 9 L yPp P,

of loops one theoretically would need to know the entire“S>5'V€ node of degrde is given by (k- 1)P(kjlky) since

> ST : we can decide to follow one of its remainikg—1 nodes[In
Enrgtbr ;b"'ty dils;mbutlor;hf:r eacgroegzrkr)}ﬁg[ of thdeisﬁfgﬁg(e)ﬂcyour notationP(k|k’) indicates the probability that, following

one link starting at nodk’, one reaches a node with connec-
tivity k.] Consequently, the number of loops of stz this

TABLE I. The exponent(n) for n=3, 4, 5 as defined in Eq3) first order approximation is given by

for real data, in the zero order approximati@©A) and in the first

order approximationfFOA), and for network models. o 1 h

NP = o Tr(Ch) (6)
System &3 &4) &5

where the matrixC is defined as

AS 1.45+0.07 2.07£0.01 2.45+0.08
ZOA 226006  3.15%0.07  3.94%0.09 Ce = (K" = DP(K[K'). (7)
FOA 1.34£0.03  1.86£0.04  2.25£0.05  f course for higher order loops it will not be possible to
Fitness 0.59£0.02  0.86+0.02  1.10+0.02 neglect the contributions of intersecting paths, but still Eq.
GNG (p=0.9 0.53+0.03 0.72+0.03 0.96+0.02  (6) would provide an upper limit to the behavior N§(N). In
GNG (p=0.9 0.53+0.03 0.74+0.03 0.99+0.02  Fig. 1 we compare the real data with the first order approxi-
D 1.60+0.01 2.20+0.03 2.70+0.03 mation given by Eq6). It is clear that this approximation
ND 1.59+0.03 2.11+0.03 264+003 captures most of the cycle structure, at least for small values

of h. Since we observe this peculiar characteristic of the
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FIG. 2. The rescaled spectra of the matgixalculated over the FIG. 3. The clustering coefficientg(k) andc,(k) in the Internet
13 snapshots of the Internet under study. for the data of November 199ircles, January 1999squares

and January 200ftriangles. Filled symbols, the same results ob-

Internet graphs it is worth looking at the structure of the_tauned in the first approximation assumption. Solid and dashed lines

matrix C. Indeed the matric is characterized by a spectrum |nd|9ate the power-law _flt to the data and to the first order approxi-
. . . . mation results, respectively.
in which there are eigenvaluaswhich scale as

A(N) ~ N (8)  cientC, i.e., the number of triangles including nodeivided
by the number of possible trianglégk, —1)/2.

where #=0.47+0.01. In Fig. 2 we show how this spectrum  Similarly, c,; measures the number of quadrilaterals pass-
scales for the different snapshots of the Internet at the aung through node divided by the number of possible quad-
tonomous system level. The largest eigenvalyg,(N) is rilaterals Z;. This last quantity is the sum of all possible
the one of much interest to us in this paper since it is resporprimary quadrilateralsZP (where all vertices are nearest
sible for the behavior oN, at largeN. Indeed we can esti- neighbors of nodé) and all possible secondary quadrilaterals
mate an upper limit for the scaling of the loops of genericZ’ (where one of the vertices is a second neighbor of ripde
length h with the system size, i.eNLz)sO(A*r‘naXIZh) where  If nodei hask" second neighborgP=ki(k;—1)(k;-2)/2 and
the scaling is supposed to be valid uritikh” where some  Z°=k"ki(k;—1)/2. In Fig. 3a) we plot c3(k),c4(k) for the
arguments support the scalihg~ N©=?"2 for random scale- Internet data at three different timésovember 1997, Janu-
free graphg23] andh" ~NY"V for correlated graphgl8]  ary 1999, and January 200%howing that the behavior of
(see for the behavior of the number of loops at lahga c3(k) andc,(k) is invariant with time and scales as
regular random graph24]).

To make a comparison between the real data and the ci(k) ~ ko0 (9)
model present in the literature at the moment we consider the
fitness model[25] and the generalized network growth | i 8(3)=0.7(1) and 5(4)=1.1(1).
(GNG) model[26] and the competition and adaptation model
[29] with (D) and without (ND) distance constraints. The
fithess model has indeeg=2.255 and the GNG model has a
power-law exponent that depends on the intrinsic paramet
p, ¥(p)=2+p/(2-p). In order to compare networks with a

similar mean.degreé(k.) €(3.4-4.0 [27_’28 for the Inter- order. However, the behavior @f(k) and c,(k) cannot be
nefl, we consider the fitness model with=2 ((K)=2m=4) oy j1ained by just looking at the largest eigenvalues ofGhe
and the GNG model with parameter 0.5((k)=2/p=4) and  matrix but one has to consider the entire spectra. For com-
p=0.6 ((k}=2/p=3.33. All models present nontrivial corre- pleteness we also considered the behavior of the clustering
lations of the nodes as can be seen by observin@tkeand  coefficientscy(k) andc,(k) in Internet modelgTable 1l). We
k"(k) functions. observe that while in the D and ND models there are large
In Table | we compare thé(h) exponents of the real data deviations form the scalin(®) these models seem in general
with the exponents numerically calculated for the consideredo capture better the cycle structure of the Internet with re-
models. While£(h) grows almost linearly witth as expected spect to the other noad hocmodels we have considered
we observe that the D and ND models seem to best reprdiere.
duce the data. In conclusion, we computed the numbég(t) of h loops
Following [16], we also measured the clustering coeffi- of sizeh=3, 4, 5 in the Internet at the autonomous system
cientscz; andcy,; as a function of the connectivity of node  level and the generalized clustering coefficients around
i for all i's. In particular,c3; is the usual clustering coeffi- individual nodes as a function of node degrees. We have

In Fig. 3, we compare the behavior of(k) andc,(k) in
real Internet data with the first order approximation results.
eAgain we observe that the first order approximation results
Are quite satisfactory, reinforcing our thesis that to explain
the loop structure of the Internet it is sufficient to stop at this
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TABLE II. The exponent of the clustering coefficiesy(k) and  of more than two points, at least to explain the cycle struc-
c4(k) as measured from Internet data as a result of the first ordefure. For this reason we have characterized the correlation
approximation(FOA) and from simulations of Internet models. matrix Cy . =(k' = 1)P(k|k’), studying its spectrum. Finally,
we have compared these results with the behavior of the

System a3) a4 same quantitiedl,(N) andcy(k) in the fitness model, in the
AS 0.75+0.05 1.13+0.05 GNG model, and in the D and ND models, a chosen subset
FOA 0.70+0.05 1.00+0.05 of the available Internet models present in the literature,
Fitness 0.67+0.01 0.99+0.01 finding that thead hocD and ND models seem to capture
GNG (p=0.5) 0.32+0.02 168+0.03 better the cycle structure of the Internet.

GNG (p=0.6 0.27+0.02 0.93+0.01 The authors are grateful to Uri Alon, Shalev ltzkovitz
D 0.3+0.2 0.8+0.2 Matteo Marsili, and Yi-Cheng Zhang for useful comments
ND 0.6+0.2 1.0+£0.2 and discussions and to the authors of R28] for suggesting

measuring the cycle structure of their model. This paper has

observed that this evolving network has a structure of th€€n financially supported by the Swiss National Founda-
loops that is well captured by the two-point correlation ma-tion, under Grant No. 2051-067733.02/1, and by the Euro-

trix. Indeed it seems that the Internet is Markovian in theP&an Commission FET Open Project No. COSIN IST-2001-
sense that it is not necessary to study a correlation functio3555, and IP Projects DELIS and EVERGROW.
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